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Motivation
I

0 Stochasticity and nonlinearity are essential
considerations in assessing the reliability of structural
and mechanical systems under extreme loads, e.g.

= Inelastic response to earthquake ground motion

= Response to wave loading under material and /or
geometric nonlinearities

= Response to turbulent wind

0 Existing methods of nonlinear stochastic dynamic
analysis are restricted to special cases, or are not
well suited for reliability analysis — hence the need
for a new method.
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0 Methods for nonlinear stochastic dynamic analysis
0  The equivalent linearization method (ELM)

0 Basic elements of TELM:
= Characterization of linear systems
= The first-order reliability method (FORM)

= Discretization of stochastic excitation

The tail-equivalent linearization method (TELM)
Characteristics of TELM

Applications of TELM

Challenges and limitation of TELM
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Concluding remarks



Methods for nonlinear stochastic dynamic
analysis
s 45|

2 Classical methods

= Fokker-Planck equation

= Stochastic averaging

"  Moment/cumulant closure
= Perturbation

2 The equivalent linearization method (ELM)

2 Monte Carlo simulation



Equivalent linearization methods (ELM)

a

Approximates the nonlinear response in terms of the response

of an “equivalent” linear system (Caughey 1963).

The ELS is determined by minimizing a measure of discrepancy

between nonlinear and linear responses:

Conventional ELM — minimize the variance of the error between
nonlinear and linear responses; requires the assumption of a

distribution, typically Gaussian (e.g., Atalik & Utku 1976; Wen 1976).

Minimize the difference in mean up-crossing rates at a selected
threshold (Casciati et al. 1993).

Minimize higher moments of the error (Naess 1995).

TELM — set the tail probability of the linear response equal to the first-

order approximation of the tail probability of the nonlinear response
(Fujimura and Der Kiureghian 2007).



Characterization of a linear system

e

X(t)

O

3 For an input-output pair (F(t),X(t)), a stable linear system
is completely defined by either of the following:

h(t) = impulse response function (IRF), i.e., response to

F(t) =6(t)

H(w) = frequency response function (FRF), i.e., amplitude
of steady-state response to F(t) = exp(iwt)



The first-order reliability method (FORM)
=]

0 An approximate method for solving time-invariant reliability
problems:

"= X = vector of random variables
g(X) = limit-state function: {g(x) < 0} = failure event
pr = Pr[g(x) < 0] probability of failure

@) —
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= u = u(x) transformation to standard normal space
G(u) = g(x(u)) limit-state function in transformed space
u* = minarg{||luf| | G(u) = 0} design point
B = ||lu*|| reliability index
pr = ®(—p), FORM approximation




Discrete representation of a stochastic process

0  General form for a zero-mean Gaussian process
F(t) =s(t)-u
s(t) = [s1(t) - s,(t)] vector of deterministic basis functions

u = [u4 -~ u,] vector of standard normal random variables

= Time-domain discretization (modulated filtered white noise)

si(t) = q(Ohe(t = t;)

h¢(-) = impulse response function of a linear filter

i i)
1 m N\ .t

A




Discrete representation of a stochastic process

0  General form for a zero-mean Gaussian process
F(t) =s(t)-u
s(t) = [s1(t) - s,(t)] vector of deterministic basis functions

u = [u4 -~ u,] vector of standard normal random variables

= Time-domain discretization (modulated filtered white noise)

si(t) = q(Ohe(t = t;)

h¢(-) = impulse response function of a linear filter
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Discrete representation of a stochastic process

0  General form for a zero-mean Gaussian process
F(t) =s(t)-u
s(t) = [s1(t) -+ s,(t)] vector of deterministic basis functions

u = [u4 -~ u,] vector of standard normal random variables

"  Frequency-domain discretization (stationary process)
F(t) = Z?ﬁ o;[u; sin(w;t) + u;cos(w;t)]

s;(t) = g;sin(w;t), §;(t) = g;cos(w;t)
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FORM solution of stochastic dynamic problems

a

Definitions:

Reliability formulation:

F(t) = s(t) - u discretized stochastic excitation

X(t,u) = response to discretized stochastic excitation

Pr(x < X(t, u)) = tail probability for threshold x at time t

G(u,x) =x—X(t,u)
Pr(x < X(t, u)) = Pr(G(u,x) <0)
u”(x) = argmin{|[uf| | G(u,x) = 0}

B(x) = [[u™ ()l
Pr(x < X(t, u)) ~ CD(—,B(x)) FORM approx. of tail probability




FORM solution of stochastic dynamic problems

a

Definitions:
=  F(t) = s(t) - u discretized stochastic excitation
= X(t,u) = response to discretized stochastic excitation

m Pr(x < X(t, u)) = tail probability for threshold x

Reliability formulation — the case of linear system
= X(t,u) =a(t) -u, a;(t) =response to s;(t)
= Gux)=x—a(t)-u

B xro — _xat)
u”(x) = fa(e)I?
© B =1m

o Pr(x < X(t, u)) = CD(—,B(x))




|dentification of the linear system

0 Given the design point, one can identify the linear system
(for the particular input-output pair)

*

xu

u' > alt) =5k

= Time-domain analysis:

Solve for h(t) in system of equations

j=1 h(t - tj)si(tj)At =aq(t), i=1,,n




|dentification of linear system

0 Given the design point, one can identify the linear system
(for the particular input-output pair)

*

xu
[Ju* |2

u* - a(t) =

* Frequency-domain analysis:

IH(a))I Jai (t) +a;(t)?
i

0; = tan! [a‘(t)
H(w;) = [H(w;)|exp(if;)



The tail-equivalent linearization method (TELM)

2 For selected threshold x and time ¢,
formulate the tail probability problem in
terms of the limit-state function

G(u,t) =x—X(t,u)
2 Find the design point u™(x)

0 Find the gradient vector of the tangent
xu*
|2

plane a(t) =

TELS

2 ldentify the tail-equivalent linear system
(TELS) in terms of its IRF h(t) or its FRF
H(w)



Characteristics of TELM

e
2 For the given threshold x and time ¢,
the tail probability of the TELS response
= first-order approximation of the tail probability
of the nonlinear system response

mmm)  Tail-Equivalent Linearization Method (TELM)



Characteristics of TELM

0 As opposed to ELM and other linearization methods,

TELM is a non-parametric method.

- There is no need to define a parameterized
linear system.

The TELS is identified numerically in terms of
its IRF h(t) or its FRF H(w).



Design-point excitation and response

| -19
0 The deign-point excitation F*(t) = s(t) - u”
represents the most likely realization of the stochastic
excitation to give rise to the event {x < X(t,u)}

0  Example:

mX + cX + k[aX + (1 — a)Z] = F(¢)
iz -+ ax |

m = 3E5kg; ¢ = 251kNs/m
k =2.1E4 kN/m, a = 0.1
y=n=1/20,n=3,4A=1

F (t) white noise, S = 1m?/s3rad

0o = mSm*?/ck




Design-point excitation and response

04 |
0 The deign-point excitation F*(t) = s(t) - u”
represents the most likely realization of the stochastic
excitation to give rise to the event {x < X(t,u)}
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Design-point excitation and response

2y |
0 The deign-point excitation F*(t) = s(t) - u”
represents the most likely realization of the stochastic
excitation to give rise to the event {x < X(t,u)}
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Design-point excitation and response

2y |
0 The deign-point excitation F*(t) = s(t) - u”
represents the most likely realization of the stochastic
excitation to give rise to the event {x < X(t,u)}
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Design-point excitation and response
=

2 The deign-point response X (t,u") represents the

X(t)
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most likely realization of the response trajectory leading

to X(t,u) = x.

Design point response

Frequency domain
Time Domain
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Characteristics of TELS

0  The TELS strongly depends on the selected threshold:
h(t) - h(t,x), H(w) - H(w, x)

IRF of the TELS for selected thresholds
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Characteristics of TELS

0  The TELS strongly depends on the selected threshold:
h(t) - h(t,x), H(w) - H(w, x)

IRF of the TELS for selected thresholds
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Characteristics of TELS
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The TELS strongly depends on the selected threshold:
h(t) - h(t,x), H(w) - H(w, x)
IRF of the TELS for selected thresholds
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Characteristics of TELS

2 The TELS strongly depends on the selected threshold:
h(t) - h(t,x), H(w) - H(w, x)

FRF of the TELS for selected threshold
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Characteristics of TELS
| *28 |

0  The TELS strongly depends on the selected threshold:
h(t) - h(t,x), H(w) - H(w, x)

FRF of the TELS for selected threshold
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Characteristics of TELS
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The TELS strongly depends on the selected threshold:
h(t) - h(t,x), H(w) - H(w, x)
FRF of the TELS for selected threshold
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Characteristics of TELS

T
0  Because of TELS’s dependence on the threshold, TELM

captures the non-Gaussian distribution of the nonlinear

response.

Prlx < X(t,u)] = ®[-B(x)]

Reliability index
T T T
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Characteristics of TELS

o Because of TELS’s dependence on the threshold, TELM
captures the non-Gaussian distribution of the nonlinear
response.

Prlx < X(t,u)] = ®[-B(x)]
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Characteristics of TELM and TELS

2 P
o Because of TELS’s dependence on the threshold, TELM
captures the non-Gaussian distribution of the nonlinear
response.
Prlx < X(t,u)] = ®[-B(x)]
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Characteristics of TELS

2 TELS is invariant of the scaling of the excitation, i.e., h(t, x)
and H(w, x) for excitation SF(t) are invariant of s.

- Useful property for developing fragility curves:

Fragility curve for threshold x = 3a,

—&— TELM Freq
I MCS

Prix < X(t,u)| s]

s/so



Characteristics of TELS
4

0 For stationary response, TELS is invariant of time t. Thus, TELSs
determined for one time point are sufficient to evaluate all
statistical properties of the response, e.g.,

= Point-in-time distribution Pr|x < X(t,u)]
= Mean up-crossing rate v (x)

*  First-passage probability Pr|x < ()IEEE% 1 X(©)]]

Mean up-crossing rate First-passage probability for T = 10s
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Characteristics of TELS
s

2 For non-stationary excitation with smooth evolution in time,
TELS at a critical time can be used as an approximation for
all times.

‘ Evolutionary TELM (Broccardo/Der Kiureghian 201 3)

0 Evolutionary input-output for a linear system

Pyx(w,t) = [M(w, )|*Pprp(w)
M(w,t) = fOtA(a), t — )h(t)e @ldr
0 ETELM
M(w,t, x) =~ fOtA(a), t — Dhres(T, x)‘e‘i“’tdr

hrgs(t, x)‘ determined at a critical point in time, e.g., peak
intensity of the excitation.




Characteristics of TELS
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For non-stationary excitation with smooth evolution in time,
TELS at a critical time can be used as an approximation for
all times.

Example — response to uniformly modulated process
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Applications of TELM
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TELM is easily extended to MDoF systems — number of
random variables remain the same.

m=3.0x10"kg for 300 |
all nodes f /W
Node 6 Force (kN)

ko=2.0x10*kN/m Yy

Node 5 ) ) “Ros o0 oo
Ko=4.0x10"kN/m IS Disp. (m)

Node 4 e
ko=5.5x10"kN/m 10007

Node 3 4 Force (kN) i /7
ko=6.5x10*kN/m | Z_L_//

Node 2 . 000-004 00 004

_ 1000-0.04 0.0 '

ko=7.0x10*KN/m 1S Disp. (m)

Node 1 1% story

ko=7.5x10*kN/m . :
Smooth bilinear hysteresis model
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Applications of TELM

0 TELM is easily extended to MDoF systems — number of
random variables remain the same.

H (o, X)‘
15t story Linear
P — 2082 1
— x=0.01m
— Xx=0.02m
— X=0.03m
10E2 4 M 10ED &

0.0E+0 \ i \
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0

Frequency, Hz Frequency, Hz



Applications of TELM

TELM is easily extended to MDoF systems — number of
random variables remain the same.

1.0E+0

1.0E40 @
15t story
LOE-L - RN
1.0E-1 -
10E-2 -
¢+ TELM-WN
1.0E-2 -
10E3 - X MCsS N
Linear
1.0E-4 ‘ ‘ . 10E3 i :
0.01 0.02 0.03 0.04 0.01 0.02 / 0.03 0.04
Xyl o Xo 1 G

First-passage probability (10s duration)




Applications of TELM
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2 Multi-component (Sl) excitations
sO(Eu® |
F(t) = ;
E (m) (t)u(m)_

a separate TELS is identified for each input component.

b (I) mode (1) mode (IIT) mode
( j 5 X' 1277 [Hz] 1.88 [Hz] m
X6,
o | [ FE] T
(1 2 i:' ' o 1.89 [Hz]
|
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Applications of TELM
e

2 Multi-component (Sl) excitations

sO(Eu® |
F(t) = :

E (m) (t)u(m)_
a separate TELS is identified for each input component.

Design point excitation for x = 30,

Design point response for x = 3a,
15 ‘ . ‘

0.2

10}
0.1}

X(tX?U'*)_

uy [m]

1 .3 I 1 1
60 80 -0.2 0 0.2 0.4 0.6

=20 0 20 c . 40 .
Forc:eX1 [kN] ux [m]



Applications of TELM
e

2 Multi-component (Sl) excitations

sO(Eu® |
F(t) = ;
s(M) () ulm
a separate TELS is identified for each input component.
FRF | EXCITATION | — % FRF 1l EXCITATION | — %%
. _20’0
_50'0
0.1F 0.1 -
oos oostb _
00 ‘i 2 o[HZ] 3 4 5

0 j 2
w[Hz]



Applications of TELM
e

O Multiply-supported inelastic system subject to spatially varying

ground motions: . 40m  _._  40m  _
\ m El - oo 5‘mz El - o : .m3 ,
g
1 2 3 !
s Y
_ xn/2 : o
D, (t) = szl[Apk cos(a)pt) + Bpk sm(a)pt)], k=1,..,m

m = number of support DOFs

Apk, By = Fourier coefficients, zero-mean Gaussian random

variables, independent for different frequencies,
correlated for same frequency different supports



Applications of TELM
| 44

0 Multiply-supported inelastic system subject to spatially varying
ground motions: . 40m  _._  40m  _

m El - o m El - o
4' 1 5‘ : 6. i

Cases considered:

1. Uniform ground motions

2. Totally incoherent ground motions

3. Wave-passage and partial incoherence
4. Case 3 with variable soil conditions



Applications of TELM

e
O Multiply-supported inelastic system subject to spatially varying

ground motions: . 40m  _._  40m  _
ml El - oo m2 El - o m3
" 4 @ ;O
: E
Uniform ground i
1 1 2 3
moftions - 2l !
0.08 DeSign'pOinf oioe_- Design-poin’r
excitation ] response
;E: ] g 0.02- ﬁ = 324‘
% 0.044 g o.oo-
E 0.02 § 002
-0.04

T T T T 1
0 2 4 6 8 10 0 2 4 6 8 10
time (sec) time (sec)



Applications of TELM
e

O Multiply-supported inelastic system subject to spatially varying

displacement (m)

ground motions: . 40m  _._  40m  _
ml El - oo m2 El - o m3
" 4 @ ;O
: E
Totally incoherent &
ground motions 1 2 3
7777777 7777777
0.08
0.10 5 . .
] Design-point )
1 . o ’ —— support 1
%61 excitation J %% - - - support2
0.04 1 = ----'-supports
0.02 =
o § **1  Design-point
004 E response
-0.06 - T 0.02-
008 p =122
-0.10 ]
-U.12—-
-0.14 1

1 M 1 v 1 v T
2 4 6 8
time (sec)

10
time (sec)



Applications of TELM

O Multiply-supported inelastic system subject to spatially varying

ground motions:

Woave passage and
partial incoherence

displacement (m)

0.14
0.12-
0.10
0.08:
U.OB—-

0.04

Design-point

excitation

time (sec)

- 40m —— 40m -
ml El - oo ‘mz El - o .m3
4 5 6 I
=
o)
(an]
1 2 3 ]
e T777777
— support 1 0.08 -
- - = support 2 1 H H
_____ sppotd oee] P€SIgN-point
i [ response
A\ ,é-. 0.04
€] p=441
T 002
£
3
E‘ 0.00
2
-0.02
-0.04 {
-0.06 T ¥ T T
10 2 4 8

time (sec)



Applications of TELM

e
O Multiply-supported inelastic system subject to spatially varying

ground motions: . 40m  _._  40m  _
ml El - oo m2 El - o m3
4 5‘ 6. |
Wave passage and 5
partial incoherence -
[ ] L[] L[] ]. 2
with variable soil e o B!
s Design-point e m'_ Design-point
excitation - ',}'Suppm ® | response
E 0.34 r,f E ﬁ — 2.87 n
% ! é 0.04 -
£ 024 g
% 01 1_% 0.02 -
0.0 _— 0.00 4
— S

time (sec) time (sec)



Applications of TELM

e
O Multiply-supported inelastic system subject to spatially varying

ground motions: . 40m  _._  40m  _
ml El - o m2 El - o m3
1@ 7@ @
First-passage £
probability for "’
1 2 3
Case 3 7777777 Ve !
1 Stiff-beam model 1
0.5 TERG 05+
0.1+ 0.1 1
0.01 0.01 1
= 1E-3 4 N _g. 1E-3 -
% 1E-4 1 % 1E-4
n‘é. 1557 ;EJ 1E-51 —=—TELM
1E-6 1E-6 - - - Linear
1E-7 ~ 1E-7 - -4- - Monte Carlo
1E-8 1E-8
1E-9 1E-9 4
1E-10 1E-10 4
1E-11 . . : : . L 1B
0 1 2 3 0 1 2 3

zlu zluy



Challenges and limitations of TELM

0 TELM requires repeated computations of X (t,u) and
Vo X (t,u) for selected values of u (typically around 10 times)

to find the design point U*. We use the Direct Differentiation
Method (DDM) for this purpose.

2 The nonlinear response must be continuously differentiable —
must use smooth or smoothened constitutive laws.

2 The limit-state surface must be well behaving. TELM does not
work well for strongly stiffening systems (e.g., Duffing
oscillator with a strong cubic term) or when nonlinearity
involves abrupt changes in the system behavior.

2 As of now, TELM is not applicable to degrading systems.



Concluding remarks

0 TELM is an alternative equivalent linearization method for
nonlinear stochastic dynamic analysis.

0 TELM: Is a non-parametric method
Captures non-Gaussian distribution of nonlinear response
Offers superior accuracy for tail probabilities
Is particularly convenient for fragility analysis
Can be applied to stationary or non-stationary response
Can be applied to MDoF systems, multi-component excitations,
variable support motions

0 TELM requires continuous differentiability of the nonlinear

response.

0 As with other linearization methods, the accuracy of TELM
depends on the nature of the nonlinearity.



Thank youl



Determination of the design point

0 lterative algorithms for solving
u*(x) = argmin{|lul| | G(u,x) = 0}
require repeated computations of X(t,u) and V,X(¢t, u).

0  For an ordered sequence of
thresholds x; < x, < --- < xp,
use extrapolated starting points:
u'(x;4q) =
u*(xl-) + 2 u” () —u’(xi_q)

lu* () —u* (xi—1) |l




Characteristics of TELM and TELS
s

a

For broad-band excitations, the TELS is insensitive to the
frequency content.

‘ TELS for response to white noise can be used as an
approximation for response to non-white excitations

First-passage probability for T = 10s First-passage probablllty for T = 10s
LE+0 goo—a @ & @ ‘ | LE+) se-0—0-e-@ | ‘
1E-1 - : ‘ ‘
> Wide-band | ‘ Lgo | |Narrow-band| ' A\x 1
= 1E2-|Input R oo e N ' input : |
e P | p
£ ot w
S 1e3 ——TELM — AL
o —o—TELM-WN ‘ LE-4 -
1g4 - CMSo o
Linear | |
1E5 i i i | LE-6 3 3 3 ]
0.0 10 20 30 40 0.0 10 20 30 40



Characteristics of TELM and TELS

a

A(t)

For non-stationary processes with smooth evolution in time,

TELS at a critical time can be used as an approximation for
all times.

Example — response to uniformly modulated process

0 5 10 15 20 0 2 4 6 8 10
1[s] w [Hz]



Characteristics of TELM and TELS

0 For non-stationary processes with smooth evolution in time,

TELS at a critical time can be used as an approximation for
all times.

0  Example — response to uniformly modulated process

— ETELM
e TELMs!

A(t)
§

o
%))
s G 6 = €0

5 10 15 20
i[s]
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